Selenium prevents diabetes-induced alterations in [Zn2+]i and metallothionein level of rat heart via restoration of cell redox cycle.
نویسندگان
چکیده
Intracellular free zinc concentration ([Zn2+]i) is very important for cell functions, and its excessive accumulation is cytotoxic. [Zn2+]i can increase rapidly in cardiomyocytes because of mobilization of Zn2+ from intracellular stores by reactive oxygen species (ROS). Moreover, ROS have been proposed to contribute to direct and/or indirect damage to cardiomyocytes in diabetes. To address these hypotheses, we investigated how elevated [Zn2+]i in cardiomyocytes could contribute to diabetes-induced alterations in intracellular free calcium concentration ([Ca2+]i). We also investigated its relationship to the changes of metallothionein (MT) level of the heart. Cardiomyocytes from normal rats loaded with fura-2 were used to fluorometrically measure resting [Zn2+]i (0.52 +/- 0.06 nM) and [Ca2+]i (26.53 +/- 3.67 nM). Fluorescence quenching by the heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine was used to quantify [Zn2+]i. Our data showed that diabetic cardiomyocytes exhibited significantly increased [Zn2+]i (0.87 +/- 0.05 nM ) and [Ca2+]i (49.66 +/- 9.03 nM), decreased levels of MT and reduced glutathione, increased levels of lipid peroxidation and nitric oxide products, and decreased activities of superoxide dismutase, glutathione reductase, and glutathione peroxidase. Treatment (4 wk) of diabetic rats with sodium selenite (5 micromol.kg body wt(-1).day(-1)) prevented these defects induced by diabetes. A comparison of present data with previously observed beneficial effects of selenium treatment on diabetes-induced contractile dysfunction of the heart can suggest that an increase in [Zn2+]i may contribute to oxidant-induced alterations of excitation-contraction coupling in diabetes. In addition, we showed that oxidative stress is involved in the etiology of diabetes-induced downregulation of heart function via depressed endogenous antioxidant defense mechanisms.
منابع مشابه
Selenium prevents diabetes-induced alterations in [Zn ]i and metallothionein level of rat heart via restoration of cell redox cycle
Ayaz, Murat, and Belma Turan. Selenium prevents diabetesinduced alterations in [Zn ]i and metallothionein level of rat heart via restoration of cell redox cycle. Am J Physiol Heart Circ Physiol 290: H1071–H1080, 2006. First published October 7, 2005; doi:10.1152/ajpheart.00754.2005.—Intracellular free zinc concentration ([Zn ]i) is very important for cell functions, and its excessive accumulati...
متن کاملEffects of changes in calmodulin levels on cell proliferation.
Calmodulin (CaM) is one of several proteins regulated in a cell cycle-dependent manner. CaM is synthesized at the G1/S boundary and has been implicated in the regulation of cell cycle progression. To elucidate the role of calmodulin in cell cycle control, clonal mouse C127 cell lines transformed with one of four different bovine papilloma virus (BPV)-based vectors were studied. These vectors ex...
متن کاملExpression of Metallothionein, P53 and Antioxidant Enzymes by Selenium and Vitamin D3 during Diethyl Nitrosamine-Induced Rat Liver Preneoplasia
Many studies have proved that the dietary micronutrient has an inhibitory effect against experimentally induced rat hepatocarcinogenesis. The present work is an attempt to understand combined effect of selenium (Se) and vitamin D3 (vit D3) on some potential protein expression markers of carcinogenesis, such as metallothionein (MT), P53 and antioxidant levels during ...
متن کاملApplication of citrate as a tricarboxylic acid (TCA) cycle intermediate, prevents diabetic-induced heart damages in mice
Objective(s):Higher cellular reactive oxygen species (ROS) levels is important in reducing cellular energy charge (EC) by increasing the levels of key metabolic protein, and nitrosative modifications, and have been shown to damage the cardiac tissue of diabetic mice. However, the relation between energy production and heart function is unclear. Materials and Methods:Streptozotocin (STZ, 150 mg...
متن کاملP-91: Vitamin E and Selenium Supplementation Affects Aldehyde Oxidase, Xanthine Dehydrogenase/Oxidase Activities In Diabetic Rat Ovaries
Background Any factor like diabetes that changes the oxidant/antioxidant balance in favor of oxidants could possibly disrupt the physiologic function of ovaries. So, we have investigated the effect of vitamin E and Se supplements on antioxidant defense in ovaries of diabetic rats with focus on Xanthine dehydrogenase/oxidase (XDH/XO) and Aldehyde oxidase (AO) activities. MaterialsAndMethods This...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 290 3 شماره
صفحات -
تاریخ انتشار 2006